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Abstract

Comprehension difficulty was rated for metaphors of the form Noun1-is-a-

Noun2; in addition, participants completed  frames of the form Noun1-is-________  with

their literal interpretation of the metaphor. Metaphor comprehension was simulated with

a computational model based on Latent Semantic Analysis. The model matched

participants’ interpretations for both easy and difficult metaphors.  When interpreting

easy metaphors, both the participants and the model generated highly consistent

responses.  When interpreting difficult metaphors, both the participants and the model

generated disparate responses.
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Metaphor comprehension:

What makes a metaphor difficult to understand?

There exists a considerable and convincing body of research in cognitive

psychology and cognitive science that indicates that people understand metaphors in

much the same way as they understand literal sentences (Cacciari &Glucksberg, 1994;

Gibbs,1994, 2001; Glucksberg, 1998). Some metaphors are easier to understand than

others, but the same can be said for literal sentences. On the whole, the view that

understanding metaphors is a more complex process than understanding literal sentences

is not supported by this body of research. In particular, it does not appear that metaphor

comprehension first involves an attempt at literal comprehension, and when that fails, a

metaphoric reinterpretation. Certainly, that is sometimes the case for complex, often

literary metaphors, but most ordinary metaphors encountered in common speech and

writing are simply understood without any need to figure them out. Some literal

sentences, too, challenge comprehension and require a certain amount of problem solving

for their comprehension. But most of the time the sentences that we hear and read are

understood without deliberate reasoning, whether they are metaphorical or literal.

Of course, claiming that metaphorical sentences are understood in the same way

as literal sentences does not tell us how either one is understood. Here, we describe a

model of text comprehension (Kintsch, 1998, 2001) that attempts to specify the process

of comprehension for both literal and metaphorical sentences, simulate the computations

involved, and evaluate the model empirically.

A basic assumption of this model is that the meaning of a word, sentence, or text

is given by the set of relationships between it and everything else that is known. This idea

is operationalized in terms of a high-dimensional semantic space. Words, sentences, and

texts are represented as vectors in this space; that is, meaning is a position in this huge

semantic space, which is defined relative to all other positions that constitute this space.

We thus represent meaning geometrically, i.e. mathematically, which means that we can

calculate with meanings. For instance, we can readily calculate how close or far apart two

vectors are in this semantic space – hence, the degree of semantic relationship between

any words, sentences, or texts.



Metaphor Difficulty  4

The technique that allows us to construct such a semantic space is Latent

Semantic Analysis (LSA), as developed by Landauer and his coworkers (for

introductions, see Landauer, 1998; Landauer & Dumais, 1997; Landauer, Foltz & Laham,

1998).  A good way to form an intuition about LSA is to compare it with how people

used to make maps (before satellite photographs): they collected a large number of

observations about distances between various geographical landmarks and then put all

these observations together in a two-dimensional map. Things will not fit perfectly

because of measurement errors or missing information, but on the whole, it turns out that

we can arrange all the geographical distances in a two-dimensional map, which is very

useful because it allows us to calculate distances between points that were never

measured directly. Note that if we want to make a map of the world, we will not be able

to put all of our data into a two-dimensional map without  severe distortions; we need

three dimensions for this purpose. LSA constructs semantic spaces in an analogous way.

The basic measurements are word co-occurrences. In the case of the semantic space used

below, that means over 30,000 documents with over 90,000 different words for a total of

about 11 million words. But what should be the dimensionality of the map that is to be

constructed?  If we employ too few dimensions (two or three, or even 100), the map will

be too crude and cannot reflect the kind of semantic relations among words that people

are sensitive to. Maps in too many dimensions are not very useful either, however. There

is too much accidental, non-essential, even contradictory information in co-occurrence

data, because which words are used with other words in any concrete, specific instance

will depend on many factors, not just their meaning. We need to discard this excess and

focus on the semantic essentials. It turns out, as an empirical fact, that semantic maps –

spaces – of 300-400 dimensions yield results that are most closely aligned with human

judgments.

LSA thus represents the meaning of a word as a vector in a 300-dimensional

semantic space (that is, as a list of 300 numbers that are meaningful only in relation to the

other vectors in that space). The meaning of a set of words can be represented as the

centroid (vector sum) of the individual word vectors. Thus, sentence meanings are

computed as the sum of the words, irrespective of their syntactic structure. Obviously,

such a procedure neglects important, meaning-relevant information that is contained in
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word order and syntax. In spite of this limitation, LSA has proven to be a powerful and

useful tool for many purposes (see the references above). Nevertheless, the neglect of

syntax is a serious limitation for LSA which is especially noticeable when we are dealing

with short sentences.

The Predication Model of Kintsch (2001) was designed to overcome this

limitation, at least for simple argument-predicate sentences. Specifically, the meaning of

a predicate is modified to generate a contextually appropriate sense of the word. Consider

The stock market collapsed and The bridge collapsed.

The meaning of the predicate collapsed that is used here with two different arguments

depends on its context: different aspects of collapse are foregrounded when the stock

market collapses than when a bridge collapses. We say that collapse has more than one

sense. (There are words, homonyms like bank, that have more than one meaning). The

Predication Model generates context appropriate senses (or meanings) of a predicate by

combining an LSA knowledge base with the construction-integration model of text

understanding of Kintsch (1998). It modifies the LSA vector representing the predicate

by combining it with features of its semantic neighborhood that are related to the

argument of the predication. Specifically, it constructs the semantic neighborhood of the

predicate (all the other vectors in the semantic space that are most closely related to the

predicate) and then uses a constraint satisfaction process to integrate this neighborhood

with the argument: stock market selects certain features from the neighborhood of

collapse, while bridge selects different ones. The selected neighborhood vectors  are then

combined with the predicate vector to yield a context-sensitive sense of the predicate. A

more detailed description of this model is given in Kintsch (2001) and the Appendix.

Generating context sensitive word senses does not always produce dramatic

results. In the sentence

My lawyer is young

the meaning of young is not much modified by lawyer. This is different for metaphors. In

My lawyer is a shark

the meaning of the predicate is-a-shark is very different from shark in isolation – the

fishy features of shark are de-emphasized  (e.g., has-fins, swims), but they do not
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disappear, while other features of shark (e.g., vicious, mean, aggressive) are weighted

more strongly because they are somewhat lawyer-related, whereas has-fins is not.

Kintsch (2000) has shown that this predication algorithm yields interpretations of

simple Noun-is-a-Noun metaphors that are in agreement with our intuitions about the

meaning of metaphors by comparing the vector generated by the model with appropriate

landmarks. The measure used for these comparisons is the cosine of the angle between

respective vectors, which can be interpreted in much the same way as correlation

coefficients. Thus, the cosine between highly similar vectors is close to +1, while

unrelated vectors have a cosine close to 0. For example, surgeon is related to scalpel

(cos=.29) but not to axe (cos=.05), while butcher is related to axe (cos=.37) but not to

scalpel (cos=.01).  My surgeon is a butcher moves surgeon closer to axe (cos=.42) in the

semantic space and farther away from scalpel (cos=.10). Conversely, My butcher is a

surgeon relates butcher to scalpel (cos=.25) and diminishes but does not obviate the

relationship to axe (cos=.26). Examples like these demonstrate that the LSA space,

together with the predication algorithm, represent the meaning of metaphors in a human-

like way.

In a recent review,  Gibbs (2001) compared several models of figurative language

understanding. It is instructive to situate the present approach among current conceptions

of metaphor comprehension in psycholonguistics, several of which are closely related  to

it, while others provide illuminating contrasts.  The two models closest to the present

approach are the class-inclusion model of Glucksberg (1998) and the underspecification

model of Frisson & Pickering (2001). Glucksberg’s view that Noun-is-a-Noun metaphors

are class inclusion assertions where the appropriate class is newly generated by the

metaphor, was the basis for developing the present model  in Kintsch (2000). Indeed,

LSA and the predication model are one way  in which the notion of generating

metaphorical superordinate categories can be operationalized. Frisson & Pickering’s

notion that people initially access an underspecified meaning of words and then elaborate

it in context also describes the predication algorithm on which the present model is based.

Specifically, the underspecified representation of polysemous words in the present case is

the LSA vector (which is not so much underspecified as unspecified, since it lumps

together all meanings and senses of a word);  the mechanism that generates a specific,
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context appropriate interpretation is the constraint satisfaction process of the predication

algorithm. A comparison with the constraint satisfaction model of Katz & Ferretti (2001),

on the other hand, points out a limitation of the present model: the spreading activation

process (see the example in the Appendix) considers only semantic constraints, while

Katz & Ferretti want to consider a broader range of constraints (e.g., syntactic

constraints).

Gentner & Bowdles (2001) highlights another limitation of the present approach.

Some metaphors are understood like analogies, i.e. by structural alignment, which is a

controlled, resource demanding process. The predication algorithm, in contrast, applies

when sentences, (metaphorical or not), are understood automatically, without requiring

this kind of problem solving.

The principal difference between the present model and other models -

psycholinguistic, linguistic, or philosophical - is that it is a fully realized, computational

theory. Below we explore whether this computational model arrives at interpretations that

are like human interpretations. In Kintsch (2000), the LSA vectors generated by the

model were compared with intuitively plausible landmarks. For instance, it was shown

that My lawyer is a shark is closer to viciousness than lawyer by itself, which is what one

would expect. Here, we employ a method that does not require the use of selected

landmarks. Instead, we directly compare the vector constructed by the model with the set

of interpretations of a metaphor generated by people. If the model successfully captures

the meaning of the metaphor, the sentence vector should be more closely related to the set

of interpretations generated by human comprehenders than to the individual words of the

sentence.

We also propose to examine the computational processes that generate the vectors

for different classes of metaphors for clues as to what differentiates the processing of

easy and difficult metaphors. It is well known empirically (Katz et al., 1988) that there

are large differences in the ease with which metaphors are understood.  What is it that

differs when the model processes easy and difficult metaphors? If we observe such a

difference, this may be a clue about the sources of comprehension difficulty in human

understanding.
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Method

Participants

Twenty-four undergraduate students at the University of Colorado participated in

the experiment.  All were native speakers of English and received class credit for their

participation.

Materials and procedure

Each participant was tested individually in a twenty-minute experimental session.

After giving informed consent, each participant received an experimental packet

consisting of a page of instructions  and three pages of stimuli (10 stimulus sentences

per page).  Each stimulus sentence was a metaphorical statement of the N1-is-N2 (for

example, My lawyer is a shark.)

Each participant saw the metaphors in the same fixed order. The stimulus order

was pseudorandom with the constraints that no two metaphors with the same argument

were adjacent and that no more than three easy or three difficult metaphors were

presented in a row.  The judgment of which metaphors would be easy and which would

be difficult was based on data from a pilot experiment using these stimuli.

Beneath each stimulus sentence were two additional items.  The first was a

sentence completion frame consisting of the subject and verb "X is" of the original

metaphor sentence followed by a blank line.  Participants were instructed to complete the

sentence with a literal version of the original metaphor.  For example, if the participant

saw the metaphor, My lawyer is a shark, followed by My lawyer is

_______________________" s/he might fill in very mean in order to reflect the literal

meaning of the metaphor.   After each sentence completion, a set of rating numbers was

listed.  The participants were asked to circle a number (1-5) to reflect the difficulty of

comprehending the stimulus metaphor.  A rating of "1" indicated that the metaphor was

very easy to understand, and a rating of "5" indicated that the metaphor was very difficult

to understand.   Participants were instructed to work their way through the packets and to

try to come up with an answer and rating for each stimulus metaphor.
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Results

Average difficulty ratings were calculated for each stimulus metaphor.  Difficulty

ratings ranged from 1.29 (The mosquito is a vampire) to 4.21 (A factor is an

administrator). Thirteen metaphors had a rating of 2 or lower and 13 metaphors had a

rating of 3 or higher. For the simulations, these were designated as easy and difficult

respectively. The remaining four metaphors with intermediate ratings were discarded.

Table 1 shows that the easy and difficult metaphors were clearly differentiated not

just in their ratings but also in terms of the interpretive responses subjects generated. For

easy metaphors, almost half (48%) of all responses were identical in meaning (e.g. blood

sucker, sucks blood, blood sucking for the Mosquito is a vampire metaphor). Much less

agreement (21%) existed among the subjects for difficult items, t(24) = 4.02, p<.01.

While there were no failures to respond on the generation test for easy items, subjects

could not generate a response on 7% of the trials for the difficult items. Furthermore, if

one looks at the whole set of responses generated by the subjects, that set was more

coherent for easy items than for hard items. The coherence measure used here is the

average cosine of each subject‘s response to the whole set of responses for a particular

metaphor, shown in the last column of Table 1. The difference between the coherence of

easy items and difficult items was statistically significant, t(24)=4.38, p<.01.

Table 1

The results for difficult metaphors are noteworthy. Faced with items such as A

factor is an administrator or Happiness is a ditch, people don’t just give up, but find

some interpretation or another. And it is not just a random interpretation, either: on the

average about 4 to 5 of our 23 subjects came up with the same response, which is less

than the 11-subject agreement we found for easy metaphors, but far from random.

Similarly, the responses subjects generated for the difficult metaphors were more diverse

(the average cosine between a response and the total response set is .55) than for easy

metaphors (average cosine is .64), but what is striking is that there still was a

considerable level of agreement, even for what one might regard as pure nonsense.
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Results of the Simulations

To determine how well the model was able to fit the data from the rating study,

we used the predication model to compute the cosine between the vector representing the

meaning of a metaphor and the vector representing the set of all responses generated by

the subjects for this metaphor. Averaged over the 26 metaphors used for the simulation,

this cosine has a value of .51. There is, however, no way of determining whether this

value is high or low, for the absolute value of cosines in LSA depends on many factors;

only relative values for cosines computed in the same way can be readily compared.

Table 2 provides such a comparison. The cosine between the metaphor vector computed

by the model and the set of responses generated by the subjects is higher than the cosine

between either:

a) just the argument of the metaphor and the set of subject responses OR

b) just the predicate of the metaphor and the set of subject responses,

p < .001 by sign test.  Importantly, the cosine generated by the predication model is also

higher than the cosine between the centroids of the argument and predicate of a

metaphor, p < .001 by sign test. Thus, while we cannot claim that the model predictions

are good on an absolute scale, we know that they are better than what can be achieved by

either the predicate or argument alone, or by the centroid of the two.

Table 2 also shows that there was no difference between how well the model fits

the subjects’ responses for easy and hard metaphors. It is clearly not the case that the

model fits the data only when subjects agree with each other, that is, for the easy

metaphors. When people agree about the interpretation of a metaphor the model

computes a vector that is closely related to that agreed upon meaning of the metaphor.

However, for difficult metaphors, where there is much less agreement and subjects

generate a more diverse set of responses, the vector computed by the model is just as

close to the average of the subjects’ responses. For easy metaphors, the model focuses in

on some specific meaning; for difficult metaphors, it specifies a diffuse but non-arbitrary

meaning – just as real people do. To understand what is happening here one must

remember that the LSA vector for a set of a responses is the centroid, i.e. average, of the

individual response vectors.  The model vector is equally close to that average of easy
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and the average  of difficult items, although the average for the easy items is computed

from a narrow range of responses while the average of the difficult items is based on a

diffuse set of responses.

Table 2

This interpretation is supported by an analysis of the relationship between the

metaphor vectors computed by the model and the modal responses given by the

participants. As Table 1 shows, almost half of all responses were common for easy

metaphors; the average cosine between these modal responses and the metaphor vector is

.32i. In contrast, many fewer common responses were given to difficult metaphors (21%),

and their cosine with the metaphor vector is significantly lower, cosine = .22 (t(24) =

1.75, p < .05). The model calculates a vector that is equally close in semantic space to the

set of responses participants produce for easy and difficult metaphors. However, that set

is different for easy and difficult metaphors. For easy metaphors, there is agreement

among participants and their choice is strongly related to the model vector.  For difficult

metaphors, there is much less agreement among participants, and their choice is less

strongly related to the model vector. In the first case, the vector is fairly precise and

generally focuses on a particular concept – the modal response of the participants; in the

second case, this focus is lacking, but the model vector nevertheless captures the variety

of responses produced by the participants.

Given these results, the question arises, “what makes a metaphor easy or difficulty

according to the predication model?”  One obvious candidate is the semantic distance

between the argument and predicate of a metaphor. One might suppose that if the two

terms are very far apart in the semantic space, it might be difficult to find something they

have in common. This conjecture does not hold up, however: the average cosine between

the argument and predicate for easy metaphors is .10, versus .07 for difficult metaphors –

a difference that is unreliable statistically, t(24) = .96. Thus, metaphors are not difficult

because their argument and predicate terms are unrelated overall.

Another possibility is that processing difficulty depends on how much

information is available about either of the two terms of a metaphor.  However, the data

do not support this hypothesis either.  The length of a vector is a measure of how much

information LSA has about a word. The average vector length for the predicates of the



Metaphor Difficulty  12

easy metaphors was .86, versus 1.27 for the hard metaphors, t(24) = 1.12, p >.05. Another

way of measuring how much LSA knows about a word is to look at the number of other

words that are close neighbors. However, there is no difference between the predicates of

easy and hard metaphors in this respect either: easy predicates have on the average 17

neighbors with a cosine greater than .5 and 36 neighbors with a cosine greater than .4,

and hard predicates have 18 neighbors with a cosine greater than .5 and 22 with a cosine

greater than .4. Finally, there is no difference in the vector length of the arguments of

easy (1.19) and hard metaphors (1.00), t(24) = .63, p > .05. Thus, it does not appear that

processing difficulty is related to properties of either the argument or the predicate of a

metaphor in isolation.

Table 3

A more promising hypothesis is that processing difficulty depends on whether at

least a few items can be found that are strongly related to both the argument and the

predicate of a metaphor.  As described in the Appendix, the predication model for

metaphors of the form N1-is-N2 works by selecting neighbors of N2 that are most closely

related to N1 and uses these terms to modify the N2-vector. Are these terms more closely

related to N1and N2 for easy metaphors than for difficult metaphors?  It turns out that is

not the case for N2 – the average cosine between N2 and the set of selected terms is not

significantly different for easy and hard metaphors, t(24) = .62, as shown in Table 3.

However, the differences between easy and difficult metaphors is statistically significant

for N1, t(24) = 2.22, p <.05, and marginally significant for N1* N2, t(24) = 1.54, p = .07.

Thus, the predication model suggests that metaphors are easy to process if the argument

has a good match among the close neighbors of the predicate; if the match is less good,

this is experienced as processing difficulty, perhaps because the search for a better match

continues into regions where items are no longer sufficiently strongly related to N2. This

must remain a tentative conclusion, however, for the relationship is not overly strong: the

correlation between the rated difficulty of a metaphor and the cosine(selections : N1) is

only r = -.46, which is significant statistically, but not very high.
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Conclusions

Latent Semantic Analysis or LSA allows one to represent the meaning of words

as vectors in a high-dimensional semantic space. The meaning of sentences can be

computed from these vectors. There are two ways of computing a sentence vector, given

the constituent word vectors. One is context free. It disregards the syntax and simply

sums up the word vectors. Another possibility is to adjust the word vectors contextually

according to their syntax. Specifically, in the predication model of Kintsch (2001),

sentence vectors of the form N1-is-N2 are computed by modifying the predicate vector N2

according to the argument vector N1. Thus, a context appropriate sense of the predicate is

generated. This model has been shown to provide a good account of several semantic

phenomena that otherwise are outside the scope of LSA by itself, including metaphor

comprehension (Kintsch, 2000). The present results provide further evidence that the

predication model is capable of adequately representing the meaning of simple nominal

metaphors, in the sense that the metaphor vectors it computes are closely related to the

interpretations that people give to these metaphors.

The data reported here focus on differences in the way people interpret easy and

difficult metaphors. We have shown that metaphors that are judged to be easy to

comprehend are interpreted in similar ways by most people, whereas a greater range of

interpretations exists for difficult to comprehend metaphors. However, people agreed

among each other to some extent, even when the metaphors they were asked to interpret

appeared to be pure nonsense. Faced with the seemingly impossible task of finding an

interpretation for such metaphors, people do not give up (a failure to respond was

observed in only in 7% of the cases); instead they come up with something, and there is a

certain consistency among people in how they respond. There is not nearly as much

consistency for difficult metaphors as for easy metaphors, but while interpretations are

diffuse and vague for difficult metaphors, they are not random. This consistency in

people’s responses may, however,  not derive from having successfully interpreted a

difficult metaphor, but may simply reflect word-based constraints.

Interestingly, the predication model behaved in much the same way: it came up

with vague and less coherent interpretations for difficult metaphors, but it matched what
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people said as well as for easily comprehended metaphors. For easy metaphors there is

widespread agreement among people, and the model produces a vector close to that

agreed upon interpretation. For difficult metaphors, responses are more varied, but the

model produces a vector that is just as close to these varied responses as it is to the

generally agreed upon interpretation of a good metaphor. For both people and model

there is something in the semantic structure that guides their interpretation. The semantic

structure provides a tight constraint for easy metaphors, and only a loose one for hard

metaphors, but the comprehension process neither collapses nor becomes random.

If the model understands easy and difficult metaphor equally well (in the sense

that it predicts human interpretations equally well), then what is different about the

computational process for easy and difficult metaphors?  It is not the case that the

constituent words by themselves are more or less informative, nor is it the case that easy

understanding requires a pre-existing global relation between the two terms of a

metaphor.  Rather, it appears that, although argument and predicate can be totally

unrelated overall, a metaphor is comprehensible if some link is found between topic and

vehicle, even though the two may be unrelated overall. Thus, lawyer and shark are

orthogonal in the semantic space (cosine (shark:lawyer) = -. 01), but there are certain

aspects – like vicious or mean – that link the two and make “My lawyer is a shark” an

easily understandable metaphor.

Theories of metaphor comprehension have traditionally been informal. We hope

that by offering a formal model that can yield quantitative experimental predictions and,

at the same time, is conceptually related to the issues under discussion in the

psycholinguistic literature, further progress can be made in our understanding of

comprehension processes, metaphoric as well as literal. We also claim that the results

presented here show that LSA provides a useful basis for a psychological theory of

meaning.
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Table 1

Rated difficulty and properties of the responses generated for easy

and difficult metaphors

Rated Difficulty of

Comprehension

Modal Response

Frequency

No-Response

Frequency

Coherence of

Responses

Easy 1.75 48% 0% .64

Difficult 3.68 21% 7% .55
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Table 2

Cosines between the vectors for metaphors, their argument (N1)

and predicates (N2), and all the responses generated by subjects

Cosine{metaphor :

responses}
Cosine{ N1 :

responses}

Cosine{ N2 :

responses}

Easy .50 .34 .34

Difficult .51 .34 .31
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Table 3

Average cosines between the items selected by the model to modify

the predicate-vector and the predicate (N2) and argument (N1) of

the metaphor, as well as the product of the cosines

cos{selections: N2} cos{selections: N1} cos{sel: N1}*cos{sel:

N2}

Easy .40 .30 .12

Difficult .43 .21 .08



Metaphor Difficulty  20

Acknowledgements:

This research was supported by a contract from the Army Research Institute to T. K.

Landauer and W. Kintsch. We thank Tom Landauer, Kirsten Butcher, Eileen Kintsch,

and the LSA Research Group for their help.



Metaphor Difficulty  21

Appendix

The Predication Algorithm (after Kintsch, 2001)

In sentences of the form Noun1-is-Noun2, Noun1 is called the argument (A) and Noun2

is called the predicate (P); the word is is neglected. The meaning of A and P is

represented in LSA as the vectors A and P. Normally, in LSA the meaning of the

sentence A-is-P is given by the vector sum A + P. According to the predication algorithm

the meaning of the sentence A-is-a-P is given by the vector sum A + PA, where PA is the

contextually modified predicate vector. To calculate PA the construction-integration (CI)

model of discourse comprehension of Kintsch (1998) is used to select from the semantic

neighborhood of P those items that are in some way relevant to A. This selection is

achieved through a spreading activation process: a network is constructed consisting of P

and A and the closest neighbors of P. Activation is spread in that network . The most

strongly activated neighbors of P will be used to modify P to create PA .

In the calculations reported here, A was allowed to select those items most relevant to it

from the 500 closest neighbors of P. However, the details of this process are best

described with a more manageable example. Consider the metaphor Happiness is gold.

The following network consisting of P (gold), A (happiness), and three close neighbors

of P (precious, currencies, and nuggets) can be constructed:
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The positive link strengths are the cosines between the respective items in the LSA space.

Thus, for example, happiness and gold have a cos = .11, that is they are only weakly

related. The neighbors of P interfere with each other, that is, they compete for the

activation  in the network.  Interference is generated by linking the three neighbors with

negative links, so that the sum of the positive links equals the sum of the  negative links

in the network. Under these conditions, the neighbors of P with the highest cosines with

A will become activated in the net, while neighbors that are only related to P but not to A

will become deactivated. In the present example, the activation of the five nodes in the

network when the process stabilizes areii

Gold 1.000

Precious 1.000

Currencies 0.000

Nuggets 0.048

Happiness 1.000

Thus, currencies and nuggets (in spite of its very strong relationship to gold) have been

rejected and precious has been selected to modify P. Let N be the LSA vector for

precious. Then PA = P + N.

For the calculations reported here, a network with the 500 closest neighbors of P is

needed.  Because of the large size of this network, an approximation procedure described
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in Kintsch (2001) was used.  The outcome of the spreading activation process was

estimated by rank ordering the product of each item’s cosine with P and its cosine with A

and selecting the five largest products to calculate PA. This estimation procedure and the

spreading activation algorithm usually, but not necessarily, select the same set of

neighbors. In the example above, the link products for precious, nuggets, and currencies

are .20, .04, and .03, respectively; i.e., the item with the highest value is precious, which

was also the most highly activated neighbor in the original spreading activation process.

                                                  
i The absolute value of the cosines between the metaphor vector and the total response set on the one hand
and the modal response on the other are not comparable, since the former involves a comparison between
two sets of words whereas the latter compares a single word with a set of words.
ii For this illustration, the activation of gold and happiness was fixed at a value of 1. In large networks these
activation values are allowed to fluctuate. When a network settles in a state where either of these nodes is
not among the 5 most highly activated ones, this indicates a failure of the comprehension process (i.e., the
algorithm failed to find links between P and A.)


